CALORIFIC PROPERTIES OF WASTES FROM SOME EXOTIC WOOD SPECIES

Aurel LUNGULEASA
Transilvania University of Brasov, Faculty of Wood Engineering
Address: Str. Universității nr. 1, 500068 Brașov, România
Tel: 0040 268 419581, Fax: 0040 268 419581, E-mail: lunga@unitbv.ro

Camelia COȘEREANU
Transilvania University of Brasov, Faculty of Wood Engineering
Address: Str. Universității nr. 1, 500068 Brașov, România
Tel: 0040 268 419581, Fax: 0040 268 419581, E-mail: cboieriu@unitbv.ro

Cosmin SPȊRCHEZ
Transilvania University of Brasov, Faculty of Wood Engineering
Address: Str. Universităţii nr. 1, 500068 Braşov, România
Tel: 0040 268 415315, Fax: 0040 268 415315, E-mail: cosmin.spirchez@unitbv.com

Tatiana DOBREV (GRȊU)
Transilvania University of Brasov, Faculty of Wood Engineering
Address: Str. Universităţii nr. 1, 500068 Braşov, România
Tel: 0040 268 415315, Fax: 0040 268 415315, E-mail: griu.tatiana86@gmail.com

Abstract:
This paper aims to present some results about the calorific properties of biomass wastes from exotic species used as fuels. There are presented the main characteristics of biomass energy, respectively the low and high calorific value, burning speed and energy efficiency. Methodology takes into consideration the equipment, wooden species and relationships for calorific determination. The final conclusion resulting from the experiments is that the biomass of exotic species is as good as any other woody biomass, when is used as fuel, because the calorific properties are closely, even slightly higher than of classical fuels.

Key words: biomass; exotic wood species; calorific value; calorific density; calorific efficiency.

INTRODUCTION
In the last years, the researchers are more and more focused on the use of woody biomass as solid fuels (Demirbas and Demirbas 2004, Proft et al. 2009, Vamvuka 2011, Verna et al. 2009), to be used both for large and small thermal furnaces, and also for rural stoves (Aghamohammadi et al. 2011, Bhattacharya and Abdul 1989, Boutin et al. 2007, Jehlickova and Morris 2007, Lundborg 1998, Moya and Tenorio 2013, Okelo et al. 2013, Prasertsan and Sajakulnukit 2006). There are several advantages of using woody biomass, such as the characteristics of being a renewable and low polluting material (William et al. 2012, Hansen et al. 2003, Li et al. 2012, Pienkos and Zhang 2009). Woody biomass is considered to be on the first place in the hierarchy of the fuels for the near future (Dhillon and von Wuelhisch 2013, Eurostat 2011, Thomas and Malczewski 2007). Lignocellulosic biomass is collected from different places (Vilcek 2013, Hansen et al. 2013, Kuhlman et al. 2013, Omer 2012), starting with the management and exploitation of the forests and ending with the recovered wood from demolition, from cleaning trees in the parks or alleys, or from sorting urban garbage in large cities. The latter category is generically called "urban forest". Biomass can be used as it is or combined with other materials (Zarringhalam et al. 2011).

Each technological process produces a lot of wood waste, which is used for own energy purpose, but in some cases the amount of biomass exceeds the own necessities. This is the case, for example, in the pulp and paper industry, where the waste from logs used as raw material results in a large amount of biomass (Gavriilescu 2008), which can be used in various forms:

• as it is, for energy purpose, with a reduced efficiency because of the variable size and moisture content of wood waste;
• as firewood, resulted as waste from the basic sawing of timber, and from the plywood, veneer and chipboard factories;
• as wood machining waste, in the form of chops, briquettes and pellets (Sola and Atis 2012, Stelte et al 2011, Tumuluru et al. 2011), used as solid fuels for thermal furnaces and stoves.
Exotic wood species can be found in the hot tropical climate. Today about 50,000 species of tropical trees are known. The exploitation of exotic species has increased by 15% in the developing countries, as stated by Pawlinka and Waliszewska (2011). Harvest time varies from a wood species to another, but it covers generally a period of time between 30 years and 80 years. An amount between 20% and 45% of the harvested wood is used as raw material, the rest being considered as wood waste. Exotic wood species are considered valuable ones, being used as veneers in the art furniture sector and for the interior decorations and panelling. The largest amount of waste from exotic wood species (more than 50% of the waste) can be found at the veneer manufacturers and only a few in the furniture sector. Biomass resulted from the exotic species is poor studied as a potential resource for solid fuels, so far (Grîu 2014).

OBJECTIVES

The objectives of this paper are focused on the investigation of the calorific power of the woody biomass from the exotic wood species, and on the analysis of several calorific characteristics of this raw material, which recommend it as a potential resource of renewable and sustainable energy in the form of solid fuels. The calorific properties of wastes from some exotic wood species were compared with those of the common wood species already used for combustion.

METHOD, MATERIALS AND EQUIPMENTS

Two types of calorific values can be distinguished in case of porous combustible materials with high water content as woody biomass has, and they are higher calorific value (HCV) and lower calorific value (LCV). Because HCV includes also the calorific value of the steam evaporated in the chimney, LCV is the parameter that characterizes the calorific power of the combustible material.

The principle of the determination of the calorific value is to measure the increase of temperature before and after combustion (DIN 51900-1 2000), until the entire heat is released. The calorific value (CV) is determined according to equation 1 (ISO 2009, Grîu 2014, ASTM D3865-12 2000):

\[
CV = \frac{k(t_f - t_i) - q_s}{m} [kJ/kg] [MJ/kg]
\]

where:
- \(k \) is calorimeter coefficient, expressed in MJ/°C;
- \(t_f, t_i \) – final and initial temperature, in °C;
- \(m \) - mass of sample, in kg;
- \(q_s \) - sum of heat for wire, cotton and other additives, in MJ.

The system used to determine the calorific value of woody biomass combustion was the explosive calorimeter in oxygen environment, type XRY-1C/Shanghai Changji Geological Instrument Co/China (Fig. 1). It is composed of the calorimeter bomb 3, where a sample weighing about 0.6 - 0.8g is introduced. The calorimeter bomb is placed in the water 4, inside the adiabatic calorimeter equipped with a mantle 5. The water in the calorimeter is mixed with a stirrer 7, and the temperature is measured with the thermoresistance 6. The oxygen is supplied by the tube 1, and the data are displayed on the computer screen 2. Before the test is performed, the calorimeter is calibrated with benzoic acid, having a fixed calorific value of 26,463kJ/kg. Thus the colorimetric coefficient \(k \) (Eq. 1) of the installation is determined.
The woody biomass was taken from several veneer manufacturers. Eleven exotic wood species were tested, namely: Ebanos (*Diospyros ebenum*), African Walnut (*Lovoa trichilioide*), Ayous (*Triplochiton scleroxylon*), Balsa (*Ochroma pyramidale*), Guaiac (*Guaiacum sanctum*), Iroko (*Chlorophora excelsa*), Limba (*Terminalia superba*), Lemon tree (*Chloroxylon swietenia*), Mahagony (*Swietenia mahagoni*), Mansonia (*Mansonia altissima*), Tiama (*Tiama altissima*).

The samples of the test were small fractions of about 0.6-0.8 grams of material, cut from the collected waste, weighed with an accuracy of 0.002g. The samples were fresh cut and clean pieces of exotic wood waste. These samples were placed in a crucible and dried in a laboratory oven at a temperature of 103 ± 2%. The samples were moistured by steaming them in a device, obtaining thus samples with a moisture content of 0%, 10%, 20% and 50% respectively. In the same time, several rectangular parallelepiped samples of 20mm x 20mm x 30mm were cut, in order to determine their density, as a ratio between the mass and their volume.

Other calorific properties were also determined, such as calorific density, speed of combustion (heat release rate) and efficiency of combustion. Calorific density of the analysed wood species was determined according to equation 2 (Grîu 2014), based on the calorific value (CV) and on the wood density (ρ).

\[
CD = CV \cdot \rho \quad [MJ/m^3]
\]

The speed of combustion (SC) was determined as the ratio between the calorific value (CV) and the burning time (t), all multiplied by the mass of the sample (m) (Grîu 2014), according to equation 3:

\[
SC = \frac{CV}{t} \cdot m \quad [KJ/min]
\]

The efficiency of combustion (η) of the fuel with a certain moisture content was determined as the ratio between the calorific value of the sample with a certain moisture content (LCV_{Mc}) and the calorific value of the oven dry sample (CV), according to equation 4 (Grîu 2014):

\[
\eta = \frac{LCV_{Mc}}{CV} \cdot 100 \quad [%]
\]

where: LCV_{Mc} - calorific value of the sample with a certain moisture content, in kJ/kg; CV - calorific value of the sample with 0% moisture content.

All values obtained by measurements, and the calculated results were processed in Excel™ program, and the necessary graphs were obtained.

RESULTS AND DISCUSSION

The calorific value was determined by the computer software. The time and temperatures recorded for each test were also noticed. Calorific value of exotic species was found to be close to the values of European wood species, such as beech wood (*Fagus sylvatica*). The maximum calorific values were recorded for Iroko (21523kJ/kg) and the minimum one for African walnut (18293kJ/kg), as can be seen in Table 1 and Fig. 2.

<table>
<thead>
<tr>
<th>Exotic wood species</th>
<th>Mass, g</th>
<th>Time of combustion, min</th>
<th>Density, kg/m³</th>
<th>HCV<sub>10%</sub>, kJ/kg</th>
<th>LCV<sub>10%</sub>, kJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abanos (Diospyros ebenum)</td>
<td>0.610</td>
<td>25</td>
<td>717</td>
<td>19170</td>
<td>18704</td>
</tr>
<tr>
<td>African Walnut (Lovoa trichilioide)</td>
<td>0.590</td>
<td>25</td>
<td>728</td>
<td>18756</td>
<td>18293</td>
</tr>
<tr>
<td>Ayous (Triplochiton scleroxylon)</td>
<td>0.570</td>
<td>29</td>
<td>802</td>
<td>20186</td>
<td>19691</td>
</tr>
<tr>
<td>Balsa (Ochroma pyramidale)</td>
<td>0.670</td>
<td>36</td>
<td>848</td>
<td>20231</td>
<td>19699</td>
</tr>
<tr>
<td>Guaiac (Guaiacum sanctum)</td>
<td>0.620</td>
<td>28</td>
<td>784</td>
<td>21480</td>
<td>20972</td>
</tr>
<tr>
<td>Iroko (Chlorophora excelsa)</td>
<td>0.580</td>
<td>25</td>
<td>716</td>
<td>22061</td>
<td>21523</td>
</tr>
<tr>
<td>Limba (Terminalia superba)</td>
<td>0.570</td>
<td>32</td>
<td>731</td>
<td>20442</td>
<td>19933</td>
</tr>
<tr>
<td>Lemon tree (Chloroxylon swietenia)</td>
<td>0.640</td>
<td>27</td>
<td>821</td>
<td>20345</td>
<td>19842</td>
</tr>
<tr>
<td>Mahagony (Swietenia mahagoni)</td>
<td>0.610</td>
<td>25</td>
<td>590</td>
<td>20073</td>
<td>19601</td>
</tr>
<tr>
<td>Mansonia (Mansonia altissima)</td>
<td>0.590</td>
<td>26</td>
<td>737</td>
<td>19268</td>
<td>18815</td>
</tr>
<tr>
<td>Tiama (Tiama altissima)</td>
<td>0.620</td>
<td>23</td>
<td>660</td>
<td>19061</td>
<td>18571</td>
</tr>
</tbody>
</table>

The calorific characteristics of some exotic species
Fig. 2.
Calorific values (HCV and LCV) of the analysed exotic wood species.

Compared with European hardwood species that recorded calorific values of approx. 18500kJ/kg, in case of exotic wood species, the experimental data have shown higher values (between 18300kJ/kg and 21500kJ/kg). This can be explained by the chemical composition of wood, i.e. chemical composition of exotic species is composed of 65.7% holocellulose and 30.3% lignin, as reported by Pawlinka and Waliszewska (2011) vs. European species with 71% holocellulose and 25% lignin (Kok and Özgür 2013, Obernberger and Thek 2004, Shulga et al. 2008). The better results obtained for exotic wood species are explained by their higher lignin content. The obtained values are similar to those of the inferior coal (2200kJ/kg - 24000kJ/kg), or the torrefied pellets (21000kJ/kg - 22000kJ/kg) (Moya and Tenorio 2013, Chen et al. 2012, Ohliger et al. 2013, Sarvaramini and Larachi 2014, Grîu and Lunguleasa 2014).

Fig. 3.
Influence of the moisture content upon the calorific value of the exotic wood species.

The moisture content is the most important factor that has influence on the amount of released heat (Nielsen et al. 2009). Wood fuel suppliers recommend a moisture content that not exceeds 20% for the firewood and 10%-12% for the other wood products (pellets, briquettes, wood chips, sawdust, etc.). According to the research method, the influence of the moisture content upon the resulted energy was investigated for different moisture contents of 0%, 10%, 20% and 50%, as seen in the diagrams of Fig. 3, where LCV and HCV linear variations are shown. As diagrams show, when the moisture content is between 90% and 110%, the combustion efficiency is zero, because the entire amount of heat is used to remove water from wood. Calorific efficiency, determined by equation 4 was calculated using the different moisture contents of the samples (Table 2). The results are shown in diagrams of Fig. 4 and Fig. 5. As noticed, the maximum calorific values are obtained for a moisture content between 10% and 20%. An increased moisture content decreases the calorific efficiency, whilst a decreased moisture content will increase the drying cost.
Fig. 4.
Influence of the moisture content upon the calorific density (blue line) and speed of combustion (red line).

Table 2

Some calorific characteristics of exotic species

<table>
<thead>
<tr>
<th>Specie</th>
<th>m, g</th>
<th>Time of combustion min</th>
<th>MC %</th>
<th>Density kg/m³</th>
<th>Calorific value, kJ/kg</th>
<th>CD MJ/m³</th>
<th>SC kJ/min</th>
<th>η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahagony</td>
<td>0.61</td>
<td>25.5</td>
<td>0</td>
<td>554</td>
<td>20090</td>
<td>11129</td>
<td>0.480</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.64</td>
<td>24.5</td>
<td>10</td>
<td>590</td>
<td>17947</td>
<td>17758</td>
<td>0.463</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>32.0</td>
<td>20</td>
<td>819</td>
<td>16057</td>
<td>15680</td>
<td>0.441</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>1.03</td>
<td>32.0</td>
<td>50</td>
<td>942</td>
<td>10387</td>
<td>9444</td>
<td>0.304</td>
<td>47</td>
</tr>
<tr>
<td>Tiama</td>
<td>0.49</td>
<td>23.5</td>
<td>0</td>
<td>445</td>
<td>19085</td>
<td>19085</td>
<td>0.398</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>23.0</td>
<td>10</td>
<td>660</td>
<td>17032</td>
<td>16836</td>
<td>0.527</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>28.0</td>
<td>20</td>
<td>865</td>
<td>15248</td>
<td>14856</td>
<td>0.504</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>1.29</td>
<td>32.0</td>
<td>50</td>
<td>1179</td>
<td>9896</td>
<td>8916</td>
<td>0.359</td>
<td>46</td>
</tr>
</tbody>
</table>

Fig. 5.
Influence of the moisture content upon the calorific efficiency.

Calorific characteristics of exotic species analyzed in this paper are slightly higher as European beech (Fagus sylvatica). For example LCV of beech for 10% moisture content is 18,000kJ/kg (Grîu 2014), compared to (18704-21523) kJ/kg in the case of exotic species.

CONCLUSIONS

In wood industry, the waste resulted after processing the exotic wood species can be a potential resource for solid fuels. When this resource is not used for composites, because of its quantity, size and degradability, it can be used as a fuel. The investigations in the paper have shown that the calorific value together with the other calorific characteristics of the exotic species of wood are
compared with those of the European species of wood, because of their higher lignin content. Thus, the obtained results presented in the paper, recommend them to be used as biomass for solid fuels.

Through the applied experimental method and because of the obtained results, the paper addresses to the specialists and/or to the traders of biomass and can be a guideline of using biomass resulted from exotic wood species for solid fuels. The authors will continue the research with the determination of the ash content of the analysed species and with the calorific prediction for other exotic species.

REFERENCES

